\(B=\frac{2x^2+4x+6}{2\left(x^2+2\right)}=\frac{x^2+2}{2\left(x^2+2\right)}+\frac{x^2+4x+4}{2\left(x^2+2\right)}=\frac{1}{2}+\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}\ge\frac{1}{2}\)
\(B=\frac{2\left(x^2+2\right)}{x^2+2}-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)