\(P=x^2-2xy+6y^2-12x+3y+45\)
\(=x^2-2x\left(y+6\right)+\left(y+6\right)^2-\left(y+6\right)^2+6y^2+3y+45\)
\(=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+\left(5y^2-9y+9\right)\)
\(=\left(x-y-6\right)^2+5\left(y-\frac{9}{10}\right)^2+\frac{99}{20}\)
\(\ge\frac{99}{20}\) . Đẳng thức xảy ra khi y = 9/10, x = 69/10
Vậy min P = 99/20 tại x = 69/10, y = 9/10