Ta có : \(P=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}=1-\frac{2}{x^2+1}\)
Vì \(\frac{2}{x^2+1}\le2,\forall x,x\in R\) nên \(P\ge-1;P=-1\) khi \(\frac{2}{x^2+1}=2\Rightarrow x=0\)
Vậy \(Min_P=-1\Leftrightarrow x=0\).
Ta có : \(P=\frac{x^2-1}{x^2+1}=\frac{x^2+1-2}{x^2+1}=1-\frac{2}{x^2+1}\)
Vì \(\frac{2}{x^2+1}\le2,\forall x,x\in R\) nên \(P\ge-1;P=-1\) khi \(\frac{2}{x^2+1}=2\Rightarrow x=0\)
Vậy \(Min_P=-1\Leftrightarrow x=0\).
Tìm giá trị của x để biểu thức : \(P=\frac{x^2+x+1}{x^2+2x+1}\left(x\ne-1\right)\) đạt GTNN
tìm GTLN hoặc GTNN của biểu thức sau \(\frac{1}{2+\sqrt{6-x^2}}\)
Tìm GTLN hoặc GTNN của các biểu thức sau
A = x^2 -4x+7
B =2x^2+12x-1
C =5x-x^2
Tìm GTNN của biểu thức \(B=\frac{16x^2+4x+1}{2x}\) với x>0.
2) tìm gtln hoặc gtnn của R=xy biết :
a) x+y=6. b) x-y=4
3) tìm n€ Z để giá trị Biểu Thức A chia hết cho giá trị Biểu Thức B
a) A=8n^2-4n+1 và B = 2n+1
b) A=4n^3-2n^2-6n+5 và B=2n-1
Tìm GTNN của biểu thức x2 - x + 2009
tìm GTNN của biểu thức A,B,C và GTLN của D,E
A= x2-4x+1
B= 4x2+4x+11
C= (x-1)(x+3)(x+2)(x+6)
D=5-8x-x2
E= 4x-x2+1
1) phân tích đa thức thành nhân tử :
a) x^2-10x+9 b) x^2-2x-15 c) 3x^2-7x+2 d) x^3-12+x^2
2) tìm gtln hoặc gtnn của R=xy biết :
a) x+y=6. b) x-y=4
3) tìm n€ Z để giá trị Biểu Thức A chia hết cho giá trị Biểu Thức B
a) A=8n^2-4n+1 và B = 2n+1
b) A=4n^3-2n^2-6n+5 và B=2n-1
Toán 8 tập 1 ôn tập chương 1
Tìm GTNN của biểu thức \(M=9\left|x-4\right|+\left|x-1\right|+x\)