\(1,A=x\left(x+1\right)+5\)
\(=x^2+x+5\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Ta có : \(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dâu = xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\Leftrightarrow x+\dfrac{1}{2}=0\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(Min_A=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
\(2,B=-x^2-4x+9\)
\(=-\left(x^2+4x+4\right)+13\)
\(=-\left(x+2\right)^2+13\)
Ta có :\(\left(x+2\right)^2\ge0\Rightarrow-\left(x+2\right)^2\le0\Rightarrow-\left(x+2\right)^2+13\le13\)
Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(Max_B=13\Leftrightarrow x=-2\)
\(3,C=x^2-4x+7+y^2+2y\)
\(=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+2\)
\(=\left(x-2\right)^2+\left(y+1\right)^2+2\)
Ta có :
\(\left(x-2\right)^2\ge0;\left(y+1\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2+2\ge2\)
Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
Vậy \(Min_C=2\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)
a) \(x\left(x+1\right)+5\)
\(=x^2+x+5\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)
\(=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{19}{4}\)
\(=\left[x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+\dfrac{19}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Vậy GTNN của biểu thức trên bằng \(\dfrac{19}{4}\) khi \(x+\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{-1}{2}\)
b) \(-x^2-4x+9\)
\(=-x^2-4x-4+13\)
\(=-\left(x^2+4x+4\right)+13\)
\(=-\left(x^2+2.x.2+2^2\right)+13\)
\(=-\left(x+2\right)^2+13\)
Vậy GTLN của biểu thức trên bằng \(13\) khi \(x+2=0\Leftrightarrow x=-2\)