Ôn tập chương II

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Anh

tìm GTLN, GTNN (nếu có)

\(f\left(x\right)=2x^2-7x+9\);   x ∈ [-1;4]

\(f\left(x\right)=x^2+5x+3\);    x ∈ [2;6]

Nguyễn Lê Phước Thịnh
3 tháng 12 2023 lúc 20:41

a: \(f\left(x\right)=2x^2-7x+9\)

=>\(f'\left(x\right)=2\cdot2x-7=4x-7\)

Đặt f'(x)=0

=>\(4x-7=0\)

=>\(x=\dfrac{7}{4}\)

\(f\left(\dfrac{7}{4}\right)=2\cdot\left(\dfrac{7}{4}\right)^2-7\cdot\dfrac{7}{4}+9=\dfrac{23}{8}\)

\(f\left(-1\right)=2\left(-1\right)^2-7\cdot\left(-1\right)+9=18\)

\(f\left(4\right)=2\cdot4^2-7\cdot4+9=13\)

Vì \(f\left(\dfrac{7}{4}\right)< f\left(4\right)< f\left(-1\right)\)

nên \(f\left(x\right)_{max\left[-1;4\right]}=18;f\left(x\right)_{min\left[-1;4\right]}=\dfrac{23}{8}\)

b: \(f\left(x\right)=x^2+5x+3\)

=>\(f'\left(x\right)=2x+5\)

f'(x)=0

=>2x+5=0

=>2x=-5

=>\(x=-\dfrac{5}{2}\)

\(f\left(-\dfrac{5}{2}\right)=\left(-\dfrac{5}{2}\right)^2+5\cdot\dfrac{-5}{2}+3=\dfrac{25}{4}-\dfrac{25}{2}+3=-\dfrac{13}{4}\)

\(f\left(2\right)=2^2+5\cdot2+3=4+10+3=17\)

\(f\left(6\right)=6^2+5\cdot6+3=69\)

Vậy: \(f\left(x\right)_{max\left[2;6\right]}=69;f\left(x\right)_{min\left[2;6\right]}=-\dfrac{13}{4}\)