Ta có: \(\dfrac{x}{x+1}=1-\dfrac{1}{x+1}\)
\(\dfrac{y}{y+1}=1-\dfrac{1}{y+1}\)
\(\dfrac{z}{z+1}=1-\dfrac{1}{z+1}\)
Cộng vế theo vế:
\(P=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Áp dụng BĐT Cauchy- Schwarz dạng Engel:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z+3}=\dfrac{9}{4}\)
\(\Rightarrow P\le3-\dfrac{9}{4}=\dfrac{3}{4}\)
\("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)