B=|x-1|+|3-x|>=|x-1+3-x|=2
Dấu = xảy ra khi (x-1)(x-3)<=0
=>1<=x<=3
\(B=\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|=\left|x-1+3-x\right|=2\)
Mà: \(\left|x-1\right|\ge0;\left|x-3\right|\ge0\) nên
\(B=\left|x-1\right|+\left|x-3\right|\ge\left|x-1\right|+\left|x-3\right|\)
Dấu "=" xảy ra:
\(\left(x-1\right)\left(x-3\right)\le0\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le3\end{matrix}\right.\)
Vậy: \(B_{min}=2\) khi \(1\le x\le3\)