ĐKXĐ : \(-2\le x\le7\)
- Áp dụng BĐT bunhiacopxky có :
\(y^2=\left(\sqrt{x+2}+\sqrt{7-x}\right)^2\le\left(1^2+1^2\right)\left(x+2+7-x\right)=18\)
\(\Leftrightarrow y\le3\sqrt{2}\)
- Dấu " = " xảy ra <=> \(\sqrt{x+2}=\sqrt{7-x}\)\(\Leftrightarrow x=\dfrac{5}{2}\)
-Lại có : \(y=\sqrt{x+2}+\sqrt{7-x}\ge\sqrt{x+2+7-x}=3\)
- Dấu " = " xảy ra <=> \(\sqrt{\left(x+2\right)\left(x-7\right)}=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)
Vậy ...