Cho hàm số \(f\left(x\right)=\sqrt{\dfrac{4m^2-x^3}{x\left|x\right|-m}}\left(m\in N,m\le20\right)\) có tập xác định D. Có bao nhiêu giá trị m để \(D\cap N^{\cdot}\)có nhiều hơn 2 phần tử
Cho hàm số \(y=f\left(x\right)=x^2-4x+3\). Tìm m nguyên sao cho \(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) có 6 nghiệm phân biệt
a) Xét dấu biểu thức :
\(f\left(x\right)=2x\left(x+2\right)-\left(x+2\right)\left(x+1\right)\)
b) Lập bảng biến thiên và vẽ trong cùng một hệ tọa độ vuông góc các đồ thị của các hàm số sau :
\(y=2x\left(x+2\right)\left(C_1\right)\)
\(y=\left(x+2\right)\left(x+1\right)\left(C_2\right)\)
c) Tính các hệ số \(a,b,c\) để hàm số \(y=ax^2+bx+c\) có giá trị lớn nhất bằng 8 và đồ thị của nó đi qua A và B
Giá trị lớn nhất của hàm số f(x)=\(x^2\left(3-X\right)\) trên đoạn \([0;3]\) là ?
y= {x2-2x-8 khi x≤2
y= {2x-12 khi x>2
Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số khi x ϵ [1;-4] . Tính M+m
bài 1: tìm các giá trị của m để biểu thức \(f\left(x\right)=x^2+\left(m+1\right)x+2m+7>0\) đúng với mọi x thuộc R
bài 2: cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\) xác định m để bất phương trình nghiệm đúng với mọi x thuộc [2;4]
bài 3: cho hàm số f(x)=\(-x^2+4\left|x-1\right|+x\). gọi giá trị lớn nhất, nhỏ nhất của hàm số trên [-3;3] lần lượt là M và m. Giá trị biểu thức 4M+2m-3 bằng ?
Tính tổng các giá trị của m trên đoạn \(\left[\dfrac{-\pi}{3};\dfrac{\pi}{2}\right]\)để hàm số \(y=cos2x+cosx+\left|2m-1\right|\) có Min = 2
Cho x, y, z là các số thực dương thỏa mãn: \(x+y-z=-1\). Tìm giá trị lớn nhất của biểu thức \(P=\dfrac{x^3y^3}{\left(x+yz\right)\left(y+zx\right)\left(z+xy\right)^2}\)
a) Giả sử phương trình bậc 2: \(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\) có 2 nghiệm \(x_1,x_2\)thỏa mãn \(x_1+x_2\le4\). Tìm Max, Min của \(P=x^3_1+x^3_2+x_1x_2\left(3x_1+3x_2+8\right)\)
b) Cho hàm \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left|x-2\right|}\). Tìm tất cả các giá trị của \(m\) để \(f\left(x\right)< 0,\forall x\in\left[0;1\right]\)