a) A = 4x2 + 4x +11
=> (2x)2+2.2x+1+11-1
=> (2x+1)2+10
do (2x+1)2 \(\dfrac{>}{ }\) 0 vs mọi x
(2x+1)2 +10 \(\dfrac{>}{ }\)10 vs mọi x
GTNNA=10 khi
2x+1=0
=>x=\(\dfrac{-1}{2}\)
a)\(A=4x^2+4x+11\)
\(\Leftrightarrow A=4x^2+4x+1+10\)
\(\Leftrightarrow A=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\)
Nên \(\left(2x+1\right)^2+10\ge10\)
Vậy GTNN của A=10 khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)
b) \(B=2x-2x^2-5\)
\(\Leftrightarrow B=-2x^2+2x-5\)
\(\Leftrightarrow B=-2x^2+2x-\dfrac{1}{2}-\dfrac{9}{2}\)
\(\Leftrightarrow B=-\left(2x^2-2x+\dfrac{1}{2}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow B=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow B=-2\left(x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{9}{2}\)
\(\Leftrightarrow B=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
Do đó \(-\left(x-\dfrac{1}{2}\right)^2\le0\)
Nên \(-\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le\dfrac{-9}{2}\)
Vậy GTLN của \(B=\dfrac{-9}{2}\) khi \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=4x^2-12x\)
\(\Leftrightarrow C=4x^2-12x+9-9\)
\(\Leftrightarrow C=\left(4x^2-12x+9\right)-9\)
\(\Leftrightarrow C=\left(2x-3\right)^2-9\)
Vì \(\left(2x-3\right)^2\ge0\)
Nên \(\left(2x-3\right)^2-9\ge-9\)
Vậy GTNN của \(C=-9\) khi \(2x-3=0\Leftrightarrow x=\dfrac{3}{2}\)
d) \(D=5-x^2+2x-4y^2-4y\)
\(\Leftrightarrow D=7-1-1-x^2+2x-4y^2-4y\)
\(\Leftrightarrow D=-x^2+2x-1-4y^2-4y-1+7\)
\(\Leftrightarrow D=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(\Leftrightarrow D=-\left(x-1\right)^2-\left(2y+1\right)^2+7\)
Vậy GTLN của \(D=7\) khi \(\left\{{}\begin{matrix}x-1=0\Leftrightarrow x=1\\2y+1=0\Leftrightarrow y=\dfrac{-1}{2}\end{matrix}\right.\)