1) a) Đặt biểu thức là A
\(A=2x^2+4y^2-4xy-4x-4y+2017\)
\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)
\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)
Vậy: MinA=2008 khi x=-3; y=-2
3) a) \(A=\dfrac{1}{x^2+x+1}\)
\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)
Vậy MinA là \(\dfrac{4}{3}\) khi x=-0,5
b) \(A=\dfrac{5}{x^2-6x+10}\)
\(B=x^2-6x+10=\left(x-3\right)^2+1\)
\(B\ge1\Rightarrow A\ge5\)
Vậy MinA = 5 khi x=3
3) c) \(A=\dfrac{-8}{x^2-2x+5}\)
\(B=x^2-2x+5=\left(x-1\right)^2+4\)
\(B\ge4\Rightarrow A\ge-2\)
Vậy: MinA =-2 khi x=1
1) b) \(A=x^4+2x^3+3x^2+2x+1\)
\(A=\left(x^2+x\right)^2+\left(x+1\right)^2+x^2\)
MinA=0 khi x=-1
3)
a\(\dfrac{1}{x^2+x+1}=\dfrac{1}{x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)
=\(\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
Vậy \(Min=\dfrac{4}{3}=>x=-\dfrac{1}{2}\)
b)\(\dfrac{5}{x^2-6x+10}=\dfrac{5}{x^2-2.x.3+9+1}=\dfrac{5}{\left(x-3\right)^2+1}\ge5\)
Vậy Min=5 khi x=3
c)\(\dfrac{-8}{x^2-2x+5}=\dfrac{-8}{x^2-2x+1+4}=\dfrac{-8}{\left(x-1\right)^2+4}\ge-2\)
Vậy Min=-2 khi x=1
2) b) Đặt biểu thức là A
\(A=-x^2+2xy-4y^2+2x+10y-8\)
\(A=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)
\(A=-\left[\left(x-y\right)^2+3y^2-2\left(x-y\right)-12y+8\right]\)
\(A=-\left[\left(x-y-1\right)^2+\left(\sqrt{3y}-2\sqrt{3}\right)^2\right]-12+8\)
Vậy MinA là 4