Lời giải:
$x^{2020}+x^{1001}+1=(x^{2020}-x)+(x^{1001}-x^2)+x^2+x+1$
$=x(x^{2019}-1)+x^2(x^{999}-1)+x^2+x+1$
Ta thấy:
$x^{2019}-1=(x^3)^{673}-1=(x^3-1).A(x)=(x-1)(x^2+x+1)A(x)$
$x^{999}-1=(x^3)^{333}-1=(x^3-1)B(x)=(x-1)(x^2+x+1)B(x)$
Do đó:
$x^{2020}+x^{1001}+1=(x^2+x+1)[x(x-1)A(x)+x^2(x-1)B(x)+1]$
Do đó phép chia $x^{2020}+x^{1001}+1$ cho $x^2+x+1$ dư $0$