Lời giải:
a) Ta có:
$6x^3+7x^2-4x+m^2-6m+5=3x^2(2x+1)+2x(2x+1)-3(2x+1)+m^2-6m+8$
$=(2x+1)(3x^2+2x-3)+m^2-6m+8=B(3x^2+2x-3)+m^2-6m+8$
Vậy đa thức thương trong phép chia $A$ cho $B$ là $3x^2+2x-3$ và đa thức dư là $m^2-6m+8$
b) Để $A$ chia hết cho $B$ thì đa thức dư $m^2-6m+8=0$
$\Leftrightarrow (m-2)(m-4)=0$
$\Leftrightarrow m=2$ hoặc $m=4$
a) Có
6x3+7x2−4x+m2−6m+5=3x2(2x+1)+2x(2x+1)−3(2x+1)+m2−6m+86x3+7x2−4x+m2−6m+5=3x2(2x+1)+2x(2x+1)−3(2x+1)+m2−6m+8
=(2x+1)(3x2+2x−3)+m2−6m+8=B(3x2+2x−3)+m2−6m+8=(2x+1)(3x2+2x−3)+m2−6m+8=B(3x2+2x−3)+m2−6m+8
Vậy đa thức thương trong phép chia AA cho BB là 3x2+2x−33x2+2x−3 và đa thức dư là m2−6m+8