ĐKXĐ: \(\left[{}\begin{matrix}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x< -12\end{matrix}\right.\)
ĐKXĐ: \(\left[{}\begin{matrix}x\ge\sqrt{5}\\x\le-\sqrt{5}\end{matrix}\right.\)
b: ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x< -12\end{matrix}\right.\)
\(\sqrt{2x+11}+\sqrt{x-1}\) ; \(\dfrac{\sqrt{-5x}}{x}\) ; \(\dfrac{\sqrt{7x^2+1}}{5}\); \(\sqrt{x^2-14x+33}\); \(\dfrac{\sqrt{-x^2+6x+16}}{-2}+\dfrac{x^2-2x}{3x^2}\)
Tìm ĐKXĐ của x để các biểu thức trên có nghĩa
A = \(\dfrac{3\sqrt{x}}{\sqrt{x}-6}\) với đkxđ : \(x\ge0\); x#1;x#36
B =\(\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với đkxđ : \(x\ge0\); x#1;x#36
Đặt T = \(\sqrt{AB}\). Tìm giá trị nhỏ nhất của biểu thức T
câu 1 rút gọn
A=\(\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}+\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{3}-\sqrt{2}}\)
B=\(\dfrac{2}{\sqrt{3}-\sqrt{5}}+\dfrac{3-2\sqrt{3}}{\sqrt{3}-2}\)
C = \(\dfrac{\sqrt{2}+1}{\sqrt{5+2\sqrt{6}}}+\dfrac{2}{\sqrt{8}+2\sqrt{15}}\)
Câu 2 cho pt
B= \(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
a, tìm ĐKXĐ và rút gọn
b, tính B khi x =\(3+2\sqrt{2}\)
c, tìm x để B nguyên
Tìm ĐKXĐ và rút gọn:
\(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(\sqrt{\dfrac{x+2}{4}}+\sqrt{25x+50}-2\sqrt{x+2}=14\) ; \(\sqrt{2x+3}=x\) ; \(\sqrt{25x^2+20x+4}=1\) ; \(\sqrt{\dfrac{x+1}{2x-1}}=2\) ; \(\dfrac{\sqrt{x-2}}{\sqrt{3x+1}}=6\)
Tìm x
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
B=\(\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)
Tìm ĐKXĐ và rút gọn:
\(\)\(D=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right)\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
Tìm x biết :
a) \(\sqrt{9x}+\sqrt{x}=12\)
b) \(\dfrac{\sqrt{x}+3}{4}=\dfrac{\sqrt{x}}{3}\)
c) \(\dfrac{5\sqrt{x}-x}{\sqrt{x}}=2\)
Bài 1: Giải pt
a) \(\sqrt{9x+9}-2\sqrt{\dfrac{x+1}{4}}=4\)
b) \(\sqrt{4x^2-4x+1}=2x-1\)
Bài 2: Cho biểu thức
A=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Tìm ĐKXĐ
b) Rút gọn A
c) So sánh giá trị của A với \(\dfrac{1}{3}\)
Bài 3: Thực hiện phép tính
a) \(\left(\sqrt{32}-2\sqrt{18}\right).\dfrac{\sqrt{2}}{2}\)
b) \(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{10}{1+\sqrt{6}}\)
Bài 4: Giải pt
a) \(\sqrt{x^2-2x+1}=x+2\)
b) \(\sqrt{3x+2}=\sqrt{x+5}\)
Bài 5: Cho biểu thức
A= \(\left(\dfrac{3\sqrt{x}+x}{x-25}+\dfrac{1}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\)
a) Tìm ĐKXĐ và rút gọn A
b) Chứng minh rằng A<1