tìm đkxđ của
a)√x-5/√x-2
b)√x2-9/x+2
Tìm ĐKXĐ
\(\dfrac{\sqrt{x^2-5}}{x}\) ; \(\sqrt{\dfrac{x-1}{x+12}}\) ; \(\sqrt{6-x}\) ; \(\sqrt{x^2-16}\) ; \(\sqrt{-x^2+x-1}\)
Tìm ĐKXĐ: \(\sqrt{x+2}=\sqrt{6-x}\)
\(\sqrt{2x+11}+\sqrt{x-1}\) ; \(\dfrac{\sqrt{-5x}}{x}\) ; \(\dfrac{\sqrt{7x^2+1}}{5}\); \(\sqrt{x^2-14x+33}\); \(\dfrac{\sqrt{-x^2+6x+16}}{-2}+\dfrac{x^2-2x}{3x^2}\)
Tìm ĐKXĐ của x để các biểu thức trên có nghĩa
\(x^2-2\left(m+5\right)x+2m+9=0\)
tìm m để bất phương trình có 2 nghiệm phân biệt x1;x2 sao cho \(x_1-2\sqrt{x_2}=0\)
tìm đkxđ \(\sqrt{x^2-3x+7}\)
a/ 2b -√b2−4b+4b−2
b/ |x+4| - x+4√x2+8x+16
c/√4−4a+a2−2a với -4 ≤x≤ 2
d/|x+4| - x+4√x2+8x+16
e/√4x^2-4x+1/2x-1với x<1/2
f/|x|+x√x2
với x>0
A = \(\dfrac{3\sqrt{x}}{\sqrt{x}-6}\) với đkxđ : \(x\ge0\); x#1;x#36
B =\(\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với đkxđ : \(x\ge0\); x#1;x#36
Đặt T = \(\sqrt{AB}\). Tìm giá trị nhỏ nhất của biểu thức T
Tìm ĐKXĐ và rút gọn:
\(\)\(D=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right)\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)