1. x\(\ne\) -1; 4
2. x\(\ne\) 3; -1
1. x\(\ne\) -1; 4
2. x\(\ne\) 3; -1
\(1.\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}
\)
2.\(\frac{2x^4}{\left(x+1\right)^2}-\frac{5x^2}{x+1}+2=0\)
3.\(\left(x+\frac{1}{x}\right)^2-6\left(x+\frac{1}{x}\right)+8=0\)
4.\(\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)
5.\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
a) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
b)\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
c)\(\frac{x +1}{x-2}+\frac{x-1}{x +2}=\frac{2\left(x^{2^{ }}+2\right)}{x^2-4}\)
d)(2x+3)\(\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
Giari các phương trình sau.
a. \(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\)
b. \(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\)
c. \(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\)
d. \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
e. \(\frac{x}{2x+6}-\frac{x}{2x+2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
f. \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)
g. \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{3}{2}\)
h. \(\frac{x-1}{x}-\frac{1}{x+1}=\frac{2x-1}{x^2+x}\)
Giai phuong trinh:
a)\(\frac{4+9x}{9x^21}=\frac{3}{3x+1}-\frac{2}{1-3x}\)
b)\(\frac{2x-3}{x+1}+\frac{x^2-5x+10}{\left(x+1\right)\left(x-3\right)}=\frac{3x-5}{x-3}\)
c)\(\frac{x\left(x+4\right)}{2x-3}=\frac{x^2+4}{2x-3}+1-\frac{2}{3-2x}\)
d)\(\frac{1}{x+2}+\frac{x}{x-3}=1-\frac{5x}{\left(x+2\right)\left(3-x\right)}-\frac{1}{x+2}\)
Giái phương trình :
a,\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
b,\(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)
c,\(\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-2x-3}\)
d,\(\frac{2}{x+2}-\frac{2x^2+16}{x^3+8}=\frac{5}{x^2-2x+4}\)
\(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}\)
\(\frac{x}{2x+6}-\frac{x}{2x+2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
GIÚP MÌNH VỚI!!
a) \(\frac{x}{2x-6}+\frac{x}{2x+2}+\frac{2x}{\left(x+1\right)\left(3-x\right)}=0\)
b) \(\frac{x-3}{x+1}-\frac{x+1}{x+3}=\frac{x^2-x-10}{x^2+4x+3}\)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)