Giái phương trình :
a,\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
b,\(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)
c,\(\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-2x-3}\)
d,\(\frac{2}{x+2}-\frac{2x^2+16}{x^3+8}=\frac{5}{x^2-2x+4}\)
a) ĐKXĐ: x∉{2;5}
Ta có: \(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
\(\Leftrightarrow\frac{6x+1}{\left(x-2\right)\left(x-5\right)}+\frac{5\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{3\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}=0\)
\(\Leftrightarrow6x+1+5x-25-3\left(x-2\right)=0\)
\(\Leftrightarrow11x-24-3x+6=0\)
\(\Leftrightarrow8x-18=0\)
\(\Leftrightarrow8x=18\)
hay \(x=\frac{9}{4}\)(tm)
Vậy: \(x=\frac{9}{4}\)
b) ĐKXĐ: x∉{0;2;-2}
Ta có: \(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{2x}{x\left(x-2\right)\left(x+2\right)}-\frac{\left(x-1\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{\left(x-4\right)\left(x-2\right)}{x\left(x+2\right)\left(x-2\right)}=0\)
\(\Leftrightarrow2x-\left(x^2+x-2\right)+x^2-6x+8=0\)
\(\Leftrightarrow2x-x^2-x+2+x^2-6x+8=0\)
\(\Leftrightarrow-5x+10=0\)
\(\Leftrightarrow-5x=-10\)
hay x=2(ktm)
Vậy: x∈∅