a, \(f\left(x\right)=-x^2+mx+m+1\)
Để f(x) \(\le0\) \(\forall x\in R\) mà \(a=-1< 0\)
\(\Leftrightarrow\Delta\le0\) \(\Leftrightarrow\Delta=m^2+4\left(m+1\right)\le0\Leftrightarrow m^2+4m+4\le0\)
\(\Leftrightarrow\left(m+2\right)^2\le0\Leftrightarrow\left(m+2\right)^2=0\Leftrightarrow m=-2\)
b, Để hàm số y xác định \(\forall x\in R\)
\(\Leftrightarrow mx^2-2mx+2\ge0\) có nghiệm \(\forall x\in R\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=4m^2-2.4.m\le0\\a=m>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}0\le m\le2\\m>0\end{matrix}\right.\) \(\Leftrightarrow0< m\le2\)
a/ Do \(a=-1< 0\)
\(\Rightarrow\) Để \(f\left(x\right)\le0\) \(\forall x\in R\Leftrightarrow\Delta'\le0\)
\(\Leftrightarrow m^2+4\left(m+1\right)\le0\Leftrightarrow\left(m+2\right)^2\le0\)
\(\Rightarrow m=-2\)
b/ Để hàm số xác định với mọi x
\(\Leftrightarrow f\left(x\right)=mx^2-2mx+2\ge0\) \(\forall x\)
- Với \(m=0\Rightarrow f\left(x\right)=2\) thỏa mãn
- Với \(m\ne0\Leftrightarrow\left\{{}\begin{matrix}m>0\\\Delta'=m^2-2m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\0< m< 2\end{matrix}\right.\)
Vậy \(0\le m< 2\)
c/
Do \(a=1>0\)
Nên để BPT đã cho vô nghiệm
\(\Leftrightarrow f\left(x\right)=x^2+4x+\left(m-2\right)^2>0\) \(\forall x\)
\(\Leftrightarrow\Delta'=4-\left(m-2\right)^2< 0\)
\(\Leftrightarrow\left(m-2\right)^2>4\Leftrightarrow\left[{}\begin{matrix}m-2>2\\m-2< -2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m>4\\m< 0\end{matrix}\right.\)
d/
Do \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\)
\(\Rightarrow\) Để BPT nghiệm đúng với mọi x thì:
\(f\left(x\right)=\left(3m-1\right)x^2-\left(3m+1\right)x+m+4< 0\)
Ủa đề là \(\left(3m-1\right)x^2-\left(3m+1\right)x+m+4\) hay \(\left(3m-1\right)x^2-\left(3m+1\right)4x+m+4\) vậy bạn?