a) để \(y=\dfrac{x+3}{4-x}\) có nghĩa \(\Leftrightarrow4-x\ne0\Leftrightarrow x\ne4\)
b) để \(y=\dfrac{x-3}{\left(x-1\right)\left(3+2x\right)}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\3+2x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\dfrac{-3}{2}\end{matrix}\right.\)
c) để \(y=\sqrt{2x+1}\) có nghĩa \(\Leftrightarrow2x+1\ge0\Leftrightarrow x\ge\dfrac{-1}{2}\)
d) để \(y=\sqrt{x-3}+\sqrt{7-x}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\7-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\le7\end{matrix}\right.\Rightarrow3\le x\le7\)
e) để \(y=\sqrt{x^2+2x+4}\) có nghĩa \(\Leftrightarrow x^2+2x+4\ge0\)
mà : \(x^2+2x+4=\left(x+1\right)^2+3\ge3>0\forall x\) \(\Rightarrow x\in R\)
g) để \(\dfrac{5}{\sqrt{x+1}}\) có nghĩa \(\Leftrightarrow x+1>0\Leftrightarrow x>-1\)