\(\frac{a}{2}\)+\(\frac{b}{3}\)=\(\frac{a+b}{2+3}\)
<=> 15a + 10b= 6(a+b)
<=> 15a -6a= 6b-10b
<=> 9a=-4b
<=> a=\(\frac{-4b}{9}\)
vì a b là các số tự nhiên nên a, b chỉ có 1 giá trị là a=b=0
Ta có \(\frac{a}{2}+\frac{b}{3}=\frac{3a+2b}{6}\)
để \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
thì \(\frac{3a+2b}{6}=\frac{a+b}{5}\)
=>5(3a+2b)=6(a+b)
=> 15a+10b=6a+6b
=> 9a=-4b
Mà a,b thuộc N
nên 9a=-4b
khi a=b=0
Mai Linh giải sai ngay bước đầu