\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{y}\)
\(\dfrac{x}{2}-\dfrac{2y}{6}+\dfrac{3z}{6}=\dfrac{x-2y+3z}{2-6+6}=\dfrac{4}{2}=2\)
Vậy
\(\dfrac{x}{2}=2\Rightarrow x=4\)
\(\dfrac{y}{3}=2\Rightarrow y=6\)
\(\dfrac{z}{2}=2\Rightarrow z=4\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{2}\Leftrightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{6}=\dfrac{x-2y+3z}{2-6+6}=\dfrac{4}{2}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.2=4\\y=2.3=6\\z=2.2=4\end{matrix}\right.\)