Ta có: \(x-y=11\)
\(\Rightarrow x=11+y.\)
Lại có:
\(\frac{2x-3y}{5}=\frac{2y-x}{6}\)
\(\Rightarrow\frac{2.\left(11+y\right)-3y}{5}=\frac{2y-\left(11+y\right)}{6}\)
\(\Rightarrow\frac{22+2y-3y}{5}=\frac{2y-11-y}{6}\)
\(\Rightarrow\frac{22-y}{5}=\frac{y-11}{6}\)
\(\Rightarrow\left(22-y\right).6=\left(y-11\right).5\)
\(\Rightarrow132-6y=5y-55\)
\(\Rightarrow132+55=5y+6y\)
\(\Rightarrow187=11y\)
\(\Rightarrow y=187:11\)
\(\Rightarrow y=17.\)
Mà \(x=11+y.\)
\(\Rightarrow x=11+17\)
\(\Rightarrow x=28.\)
Vậy \(\left(x;y\right)=\left(28;17\right).\)
Chúc bạn học tốt!
Ta có:
\(\frac{2x-3y}{5}=\frac{2y-x}{6}\Rightarrow6\left(2x-3y\right)=5\left(2y-x\right)\)
\(\Rightarrow12x-18y=10y-5x\)
\(\Rightarrow12x+5x=10y+18y\)
\(\Rightarrow17x=28y\)
Ta lại có:\(x-y=11\Rightarrow x=11+y\)
Thay vào, ta có:
\(17x=28y\)
\(\Rightarrow17\left(11+y\right)=28y\Rightarrow187+17y=28y\Rightarrow28y-17y=187\Rightarrow11y=187\Rightarrow y=17\Rightarrow x=28\)
Vậy x=28, y=17
Lời giải:
$x-y=11\Rightarrow x=y+11$
Thay vào điều kiện số 1:
$\frac{2x-3y}{5}=\frac{2y-x}{6}$
$\frac{2(y+11)-3y}{5}=\frac{2y-(y+11)}{6}$
$\frac{22-y}{5}=\frac{y-11}{6}$
$\Rightarrow 6(22-y)=5(y-11)$
$\Rightarrow y=17\Rightarrow x=y+11=28$
Vậy.........
Lời giải:
$x-y=11\Rightarrow x=y+11$
Thay vào điều kiện số 1:
$\frac{2x-3y}{5}=\frac{2y-x}{6}$
$\frac{2(y+11)-3y}{5}=\frac{2y-(y+11)}{6}$
$\frac{22-y}{5}=\frac{y-11}{6}$
$\Rightarrow 6(22-y)=5(y-11)$
$\Rightarrow y=17\Rightarrow x=y+11=28$
Vậy.........