làm ở dưới rồi đừng bắt làm lại nhé --_
Câu hỏi của Lê Nguyễn Minh Hằng - Toán lớp 7 | Học trực ... - Hoc24
làm ở dưới rồi đừng bắt làm lại nhé --_
Câu hỏi của Lê Nguyễn Minh Hằng - Toán lớp 7 | Học trực ... - Hoc24
Tìm a \(\in\) Q biết:
a) \(\frac{2a+8}{5}-\frac{a}{5}\in Z\)b) \(\frac{2a+9}{a+3}-\frac{5a+17}{a+3}-\frac{3a}{a+3}\in Z\)tìm a ϵ Z để
\(\frac{2a+9}{a+3}\) - \(\frac{5a+17}{a+3}\) - \(\frac{3a}{a+3}\) là số nguyên
2. Tìm 3 số biết.
a) \(\frac{x}{y}=\frac{y}{8}=\frac{z}{9}\) và x + y + z = 72
b) x : y : z = 5 : 4 : 3 và x +y - z = 18
c) \(\frac{a}{5}=\frac{b}{4}=\frac{c}{7}\) và a + 2b +c = 10
d) \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}\) và a = 15
e) \(\frac{a}{4}=\frac{b}{5}=\frac{c}{2}\) và a + b = 10
f) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) và 2a + b - c = -12
g) \(\frac{a}{5}=\frac{b}{6}=\frac{c}{2}\) và 2a + b - 4c = 24
h) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{-7}\) và abc = 366
Tập hợp các giá trị nguyên dương a sao cho \(A=\frac{2a+9}{a+3}+\frac{5a+17}{a+3}-\frac{3a}{a+3}\)nhậ giá trị nguyên là:
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
Tìm x \(\in\) Z biết:
a) \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\) b) \(4\frac{5}{9}:2\frac{5}{18}-7< x< \left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right):\left(-21\frac{2}{3}\right)\)a ) Tìm x để : \(\frac{x^2-1}{x^2}\le0\)
b ) Cho \(\frac{a^2+b^2}{c^2+d^2}=\frac{qb}{cd}\) a ,b , c , d \(\ne\) 0 , c \(\ne\) + d . Chứng minh : \(\frac{a}{b}=\frac{c}{d}\) hoặc \(\frac{a}{b}=\frac{d}{c}\)
c ) Cho P = \(\frac{5}{\sqrt{x}-3}\) . Tìm x \(\in\) Z để P \(\in\) Z
Tìm x,y \(\in\) Z sao cho:
a) \(\frac{x}{5}=\frac{-3}{y}\)b) \(\frac{-11}{x}=\frac{y}{3}\)tìm a ϵ Z để
\(\frac{2a+8}{5}\) - \(\frac{a}{5}\) là số nguyên