a: \(\dfrac{x^2-xy+y^2}{x^2+2xy+y^2}\cdot\dfrac{x^2+3xy+2y^2}{x^2-3xy+2y^2}\)
\(=\dfrac{x^2-xy+y^2}{\left(x+y\right)^2}\cdot\dfrac{\left(x+2y\right)\left(x+y\right)}{\left(x-2y\right)\left(x-y\right)}\)
\(=\dfrac{\left(x^2-xy+y^2\right)\left(x+2y\right)}{\left(x-2y\right)\left(x^2-y^2\right)}\)
b: \(\dfrac{x^2+1}{3x}:\dfrac{x^2+1}{x-1}:\dfrac{x^3-1}{x^2+x}:\dfrac{x^2+2x+1}{x^2+x+1}\)
\(=\dfrac{x-1}{3x}\cdot\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{\left(x+1\right)^2}\)
\(=\dfrac{x\left(x+1\right)}{3x\left(x+1\right)^2}=\dfrac{1}{3\left(x+1\right)}\)