= [\(\frac{\left(x+3\right)^2-\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)] . \(\frac{x+3}{3x}\)
= \(\frac{\left(x+3\right)^2-\left(x-3\right)^2}{\left(x-3\right).3x}\)
= \(\frac{x^2+6x+9-x^2+6x-9}{\left(x-3\right).3x}\)
=\(\frac{12x}{\left(x-3\right).3x}\)
= \(\frac{4}{x-3}\)