a)Đkxđ x≠\(\frac{5}{4}\)
Ta có để \(\frac{2x+3}{4x-5}\)=0=>2x+3=0=>x=\(\frac{3}{2}\)(thỏa mãn)
b)Ta có \(x^2-4x+3=x^2-3x-x+3\)
=x(x-3)-(x-3)
=(x-1)(x-3)
=>Đkxđ x≠1,3
để bài b)=0 duy ra (x-1)(x-2)=0
=>x=1,x=2 đối chiếu đkxđ có x=2 (t/mãn)
c)phân thức tương đương:\(\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\)
= \(\frac{x+1}{x-1}\)
=>Đkxđ x≠1
Để x+1/x-1=0=>x+1=0
=>x=-1(t/mãn)
d) phân thức tương đương
\(\frac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+5\right)}\)
=\(\frac{x+2}{x+5}\)=>x≠-5
để phân thức đạt 0 suy ra x+2=0
=>x=-2
e)phân thức tương đương
\(\frac{x\left(x-4\right)\left(x+4\right)}{x\left(x-4\right)\left(x+1\right)}\)
=\(\frac{x+4}{x+1}\)
Đkxđ x khác -1
Để phân thức đạt GT là 0 x+4=0=>x=-4
g)\(\frac{\left(x-1\right)\left(x+1\right)^2}{\left(x-1\right)\left(x^2+x+3\right)}\)
=\(\frac{\left(x+1\right)^2}{x^2+x+3}\)
vì\(x^2+x+3>0\)(Dễ dàng chứng minh)
=>xϵR
Để phân thức đạt gt là 0 => \(\left(x+1\right)^2=0=>x=-1\)