Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
Cho tam giác ABC cân tại A. Kẻ BE và CF lần lượt vuông góc với AC và AB(E∈AC;F∈AB)
1/ C/minh BE=CF và góc ABE= góc ACF
2/ Gọi I là giao điểm của BE và CF, c/minh IE=IF
3/ AI là tia p/g của góc A
Cho tam giác ABC cân(AB=AC). Các đường phân giác BE,CF cắt nhau tại H. a)chứng minh tam giác ABE=tam giác ACF b)tia AH cắt BC tại D.chứng minh D là trung điểm BC và EF//BC c)chứng minh AH là trung trực của EF.so sánh HF và HC d)tìm điều kiện của tam giác ABC để HC=2HD
cho tam giác abc cân tại a ab ac 25cm bc=30cm. gọi h là trung điểm của bc.
a, chứng minh ah vuông góc vs bc.
b. tính AH
c, lấy điểm D trên BC và điểm E trên AC sao cho AD = AE. tính tam giác ODB = tam giác OEC.
MN GIÚP MIK VỚI CẦN GẤP.
Cho tam giác cân ABC (AB=AC) .Gọi D là trung điểm của BC, từ D hạ DE, DF vuông góc với Á theo thứ tự AC. Chứng minh:
a) tam giác AED = tam giác ÀD vuông góc vơi AB, AC theo thứ tự (E thuôc AB, F thuộc AC). Chứng minh:
a) tam giác AED= tam giác AFD và AD là trung trực của đoạn thẳng EF
b) Trên tia đối tia DE lấy điểm K sao cho DK=DE. Chứng minh tam giác EKC vuông
c) So sánh BF và EK
Cho tam giác ABC vuông tại A ( AB < AC), BD là đường phân giác của góc B (D thuộc AC). Vẽ DE vuông góc BC tại E. a) Cho biết AB = 3 cm AC = 4 cm .Tính BC b) Chứng minh BD là đường trung trực của AE c) Chứng minh rằng DA < DC d) Vẽ CF vuông góc với BD tại F. Chứng minh rằng các đường thẳng AB, DE, CF đồng quy.
Cho tam giác ABC vuông tại A. Kẻ phân giác BE của góc ABC (E AC). Trên BC lấy điểm D sao cho AB = BD. a)Chứng minh ΔABE = ΔDBE ; BC ⏊ ED b)Kéo dài DE cắt đường thẳng AB tại M. Chứng minh BM = BC c)Gọi N là trung điểm của MC. Chứng minh ba điểm B; E; N thẳng hàng.
Cho tam giác ABC vuông tại A có AB = 9 cm ; BC = 15 cm
a, Tính AC và so sánh các góc của tam giác ABC
b, Lấy D thuộc tia đối của AB sao cho A là trung điểm của BD. Chứng minh tam giác BCD cân
c, Lấy E là trung điểm BC và BK cắt AC tại M. Tính MC
Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC). Trên cạnh BC lấy điểm E sao cho BE = AB.
a, Chứng minh DE vuông góc với BC
b, Tia ED cắt tia BA tại F, tia BD cắt CF tại K. Chứng minh K là trung điểm của CF.