Gọi G là giao điểm BD và CE khi đó ta có G là trọng tâm tam giác ABC
\(\Rightarrow\)\(BG=\frac{2}{3}BD;CG=\frac{2}{3}CE\)
Mà BD=CE nên suy ra BG=CG
Do đó tam giác BGC là tam giác cân
\(\Rightarrow\widehat{GBC}=\widehat{GCB}\)
Kết hợp với BD=CE(gt)\(\Rightarrow\Delta BCD=\Delta CBE\left(c.g.c\right)\)
\(\Rightarrow\)\(\widehat{CBE}=\widehat{BCD}\)\(\Rightarrow\Delta ABC\) cân tại A (ĐPCM)
Ta có: \(BD\) là đường trung tuyến đồng thời \(BD\) là đường cao của \(\Delta ABC.\)
=> \(BD\perp AC.\)
\(CE\) là đường trung tuyến đồng thời \(CE\) là đường cao của \(\Delta ABC.\)
=> \(CE\perp AB.\)
Xét 2 \(\Delta\) vuông \(ABD\) và \(ACE\) có:
\(\widehat{ADB}=\widehat{AEC}=90^0\) (vì \(BD\perp AC;CE\perp AB\))
\(BD=CE\left(gt\right)\)
\(\widehat{A}\) chung
=> \(\Delta ABD=\Delta ACE\) (cạnh góc vuông - góc nhọn kề)
=> \(AB=AC\) (2 cạnh tương ứng)
=> \(\Delta ABC\) cân tại \(A\left(đpcm\right).\)
Chúc bạn học tốt!