Bài 1. Cho tam giác ABC cân tại A có BAC = 45o. Từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC tại M. Trên tia đối của tia AM lấy điểm N sao cho AN = BM. Chứng minh:
a) Chứng minh: ΔMAC cân.
b) Chứng minh: AMC = BAC = 45o
c) Chứng minh: ΔABM = ΔCAN.
d) Chứng minh: ΔMCN vuông cân
Bài 2. Cho ΔABC có góc A nhọn. Kẻ tia Ax ⊥ AB (tia AC nằm giữa Ax và AB ). Kẻ tia Ay ⊥ AC (tia AB nằm giữa Ay và AC). Lấy điểm E và F lần lượt thuộc tia Ax và Ay sao cho AE = AB và
a) Chứng minh: BF = CE.
b) Gọi M và N lần lượt là trung điểm của BF và CE. Chứng minh: ΔAMN vuông cân.
Bài 3. Trên cạnh BC của ΔABC lấy 2 điểm E và F sao cho BE = CF. Qua E và F vẽ các đường thẳng song song với BA chúng cắt cạnh AC tại G và H. Qua E vẽ đường thẳng song song với AC cắt AB tại D.
a) Chứng minh: AD = GE.
b) Chứng minh: ΔBDE = ΔFHC.
c) Chứng minh: AB = GE + FH.
Bài 4. Cho tam giác ABC vuông tại A và AB = 2AC. Gọi E là trung điểm của AB. Trên tia đối của tia AC lấy điểm D sao cho AB = AD. Chứng minh rằng:
a) BC = DE.
b) BC ⊥ DE.
Bài 5. Cho ΔABC vuông cân tại A, M là trung điểm cạnh BC, E là điểm nằm giữa M và C. Vẽ BH ⊥ AE tại H và CK ⊥ AE tại K. CMR:
a) AM ⊥ BC
b) BH = AK
c) ΔMBH = ΔMAK
d) ΔMHK vuông cân.
Cho tam giác abc cân tại a trên cạnh BC lấy điểm M trên tia đối của tia CB lấy điểm N sao cho BM=CM, các đường thẳng vuông góc với BC kẻ từ M và N cắt AB và AC lần lượt tại D và E, đương thẳng DE cắt BC tại I. Gọi O là giao điểm của đường phân giác góc A với đường thẳng vuông góc với AC tại C. CMR: a, DM=EN b, I là trung điểm của DE c,Tam giác BAC=Tam giác COE d, OI vuông góc với DE
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
CMR
a, I là trung điểm của DE
b, Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Câu 3(). Cho tam giác ABC cân tại A. Lấy điểm E thuộc cạnh BC, điểm F thuộc tia đối của tia CB sao cho BE = CF Qua E kẻ đường thẳng vuông góc với BC cắt cạn AB tại M. Qua F kẻ đường thẳng vuông góc với BC cắt cạnh AC kéo dài tại N. A) Cho BM = 10cm BE=6cm. Tính EM. B) Cho góc ACB =40^ So sánh các cạnh của tam giác ABC. C)Chứng minh: EM=FN. F)Vẽ đường thẳng qua A và song song EM và cắt BC tại I. Vẽ đường thẳng Bx vi óc với AB tại B, đường thẳng Cy vuông góc với AC tại C. Chứng minh ba đường thẳng Bx, AI, Cy cùng đi qua 1 điểm D)Gọi H là giao điểm của BC và MN. Chứng minh H là trung điểm của EF. E)Chứng minh: CM > CN
Cho tam giác ABC có AB =AC, M là trung điểm của BC a) Chứng minh AM là tia phân giác của góc BAC b) AM vuông góc với BC c) Từ C kẻ đường thẳng song song với AB, cắt AM tại D. Chứng minh tam giác ADC cân
Bài 6: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh ΔAMN là tam giác cân.
b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.
c) Gọi O là giao điểm của BH và CK. Chứng minh ΔOBC cân.
d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy M , trên tia đối của CB lấy N sao cho BM = CN
a) CM : tam giác ABM= tam giác ACN
b) Kẻ BH vuông góc với AM tại H, CK vuông góc với AN tại K
CM: BH=CK
c) CM: HK//BC
d ) Gọi O là giao điểm của HB và KC. Chứng minh tam giác OBC cân.
Làm nhanh giúp mình nhaa. Cám ơn nhìuu<33