Do tam giác ABC cân tại A nên AH là đường cao đồng thời là trung tuyến
Hay H là trung điểm BC \(\Rightarrow CH=\dfrac{BC}{2}\)
Từ H hạ HD vuông góc AC
\(\Rightarrow HD||BK\) (cùng vuông góc AC)
\(\Rightarrow\) HD là đường trung bình tam giác ACH
\(\Rightarrow HD=\dfrac{BK}{2}\)
Áp dụng hệ thức lượng trong tam giác vuông ACH:
\(\dfrac{1}{HD^2}=\dfrac{1}{AH^2}+\dfrac{1}{CH^2}\)
\(\Rightarrow\dfrac{1}{\left(\dfrac{BK}{2}\right)^2}=\dfrac{1}{AH^2}+\dfrac{1}{\left(\dfrac{BC}{2}\right)^2}\Rightarrow\dfrac{4}{BK^2}=\dfrac{1}{AH^2}+\dfrac{4}{BC^2}\)
\(\Rightarrow\dfrac{1}{BK^2}=\dfrac{1}{4AH^2}+\dfrac{1}{BC^2}\)