Tam giác ABC cân ở A có đường cao AH=>BC=2CH
Ta có:\(\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}=\dfrac{4AH^2+BC^2}{4BC^2AH^2}=\dfrac{4AH^2+\left(2CH\right)^2}{16S_{ABC}^2}=\dfrac{4\left(AH^2+CH^2\right)}{16S^2_{ABC}}\)
Do AH vuông góc với BC nên theo pytago AH2+CH2=AC2
=>\(\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}=\dfrac{4AC^2}{16S^2_{ABC}}=\dfrac{AC^2}{4\cdot\left(\dfrac{1}{2}AC\cdot BK\right)^2}=\dfrac{1}{BK^2}\left(ĐPCM\right)\)