a) Xét tam giác BCK và tam giác CBH có:
góc BKC = góc CHB = 90 độ
BC: chung
góc KBC = góc HCB ( vì tam giác ABC cân tại A)
=> Tam giác BCK = tam giác CBH ( cạnh huyền-góc nhọn)
=> CK=BH (đpcm)
b) Theo câu a) tam giác BCK = tam giác CHB
=> góc KCB = góc HBC
=> tam giác IBC cân tại I
=> IB = IC
Xét tam giác AIB và tam giác AIC có:
AI: chung
AB=AC ( vì tam giác ABC cân tại A)
IB=IC (cmt)
=> tam giác AIB = tam giác AIC ( c.c.c)
=> góc BAI = góc CAI
=> AI là tia phân giác của góc A
c) Vì tam giác ABC cân tại A nên góc ABC = góc AC = \(\frac{180^0-\widehat{A}}{2}\)
Theo câu a) tam giác BCK = tam giác CBH
=> BK=CH
Mà AB=AC
=> AB-BK=AC-CH
=> AK=AH
=> tam giác AKH cân tại A
=> góc AKH = góc AHK = \(\frac{180^0-\widehat{A}}{2}\)
Do đó: góc ABC = góc AKH
Mà đây là 2 góc đồng vị nên BC//HK