Do \(\dfrac{{ - 11}}{8} < 0\) và \(\dfrac{1}{{24}} > 0\) nên \(\dfrac{{ - 11}}{8} < \dfrac{1}{{24}}\)
Do \(\dfrac{{ - 11}}{8} < 0\) và \(\dfrac{1}{{24}} > 0\) nên \(\dfrac{{ - 11}}{8} < \dfrac{1}{{24}}\)
So sánh các phân số sau:
a) \(\dfrac{7}{{10}}\) và \(\dfrac{{11}}{{15}}\)
b) \(\dfrac{{ - 1}}{8}\) và \(\dfrac{{ - 5}}{{24}}\)
Em hãy nhắc lại quy tắc so sánh hai phân số có cùng mẫu (tử và mẫu đều dương), rồi so sánh hai phân số \(\dfrac{7}{{11}}\) và \(\dfrac{9}{{11}}\).
So sánh các phân số sau:
\(\dfrac{3}{{20}}\) và \(\dfrac{6}{{15}}\)
Để giải quyết bài toán mở đầu, ta cần so sánh \(\dfrac{3}{4}\) và \(\dfrac{5}{6}\). Em hãy thực hiện các yêu cầu sau:
• Viết hai phân số trên về hai phân số có cùng một mẫu dương bằng cách quy đồng mẫu số.
• So sánh hai phân số cùng mẫu vừa nhận được. Từ đó kết luận về phần bánh còn lại của hai bạn Vuông và Tròn
Không quy đồng mẫu số, em hãy so sánh \(\dfrac{{31}}{{32}}\) và \(\dfrac{{ - 5}}{{57}}\)
a) Viết phân số \(\dfrac{{24}}{7}\) dưới dạng hỗn số.
b) Viết hỗn số \(5\dfrac{2}{3}\) dưới dạng phân số.
Quy đồng mẫu các phân số sau:
a) \(\dfrac{2}{3}\) và \(\dfrac{{ - 6}}{7}\)
b) \(\dfrac{5}{{{2^2}{{.3}^2}}}\) và \(\dfrac{{ - 7}}{{{2^2}.3}}\)
Quy đồng mẫu các phân số: \(\dfrac{{ - 3}}{4};\dfrac{5}{9};\dfrac{2}{3}\)
Tương tự HĐ1, em hãy quy đồng mẫu hai phân số \(\dfrac{{ - 3}}{5}\) và \(\dfrac{{ - 1}}{2}\)