\(BCNN\left( {5,2} \right) = 10\)
\(\begin{array}{l}\dfrac{{ - 3}}{5} = \dfrac{{ - 3.2}}{{5.2}} = \dfrac{{ - 6}}{{10}}\\\dfrac{{ - 1}}{2} = \dfrac{{ - 1.5}}{{2.5}} = \dfrac{{ - 5}}{{10}}\end{array}\)
\(BCNN\left( {5,2} \right) = 10\)
\(\begin{array}{l}\dfrac{{ - 3}}{5} = \dfrac{{ - 3.2}}{{5.2}} = \dfrac{{ - 6}}{{10}}\\\dfrac{{ - 1}}{2} = \dfrac{{ - 1.5}}{{2.5}} = \dfrac{{ - 5}}{{10}}\end{array}\)
Để giải quyết bài toán mở đầu, ta cần so sánh \(\dfrac{3}{4}\) và \(\dfrac{5}{6}\). Em hãy thực hiện các yêu cầu sau:
• Viết hai phân số trên về hai phân số có cùng một mẫu dương bằng cách quy đồng mẫu số.
• So sánh hai phân số cùng mẫu vừa nhận được. Từ đó kết luận về phần bánh còn lại của hai bạn Vuông và Tròn
Không quy đồng mẫu số, em hãy so sánh \(\dfrac{{31}}{{32}}\) và \(\dfrac{{ - 5}}{{57}}\)
Quy đồng mẫu các phân số sau:
a) \(\dfrac{2}{3}\) và \(\dfrac{{ - 6}}{7}\)
b) \(\dfrac{5}{{{2^2}{{.3}^2}}}\) và \(\dfrac{{ - 7}}{{{2^2}.3}}\)
Em hãy nhắc lại quy tắc so sánh hai phân số có cùng mẫu (tử và mẫu đều dương), rồi so sánh hai phân số \(\dfrac{7}{{11}}\) và \(\dfrac{9}{{11}}\).
Quy đồng mẫu các phân số: \(\dfrac{{ - 3}}{4};\dfrac{5}{9};\dfrac{2}{3}\)
Em thực hiện các yêu cầu sau để quy đồng mẫu hai phân số \(\dfrac{5}{6}\) và \(\dfrac{7}{4}\).
+ Tìm bội chung nhỏ nhất của hai mẫu số.
+ Viết hai phân số mới bằng hai phân số đã cho và có mẫu là số vừa tìm được.
So sánh các phân số sau:
a) \(\dfrac{7}{{10}}\) và \(\dfrac{{11}}{{15}}\)
b) \(\dfrac{{ - 1}}{8}\) và \(\dfrac{{ - 5}}{{24}}\)
a) Viết phân số \(\dfrac{{24}}{7}\) dưới dạng hỗn số.
b) Viết hỗn số \(5\dfrac{2}{3}\) dưới dạng phân số.
Tròn nói mỗi bạn được 1 cái bánh và \(\dfrac{1}{2}\) cái bánh. Em có đồng ý với Tròn không?