Giả sử : \(\sqrt{8}+\sqrt{5}\supseteq\sqrt{7}+\sqrt{6}\)
\(\Leftrightarrow\left(\sqrt{8}+\sqrt{5}\right)^2\supseteq\left(\sqrt{7}+\sqrt{6}\right)^2\)
\(\Leftrightarrow13+4\sqrt{10}\supseteq13+2\sqrt{42}\)
\(\Leftrightarrow4\sqrt{10}\supseteq2\sqrt{42}\)
\(\Leftrightarrow2\sqrt{10}\supseteq\sqrt{42}\)
\(\Leftrightarrow\left(2\sqrt{10}\right)^2\supseteq\left(\sqrt{42}\right)^2\)
\(\Leftrightarrow40\supseteq42\left(sai\right)\)
vậy\(\sqrt{8}+\sqrt{5}\subset\sqrt{7}+\sqrt{6}\)