Lời giải:
Ta có:
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow 2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow 2A-A=2-\frac{1}{2^{100}}\)
\(\Leftrightarrow A=2-\frac{1}{2^{100}}< 2\)
Vậy \(A< B\)