Ta có: \(\dfrac{1}{2^2}=\dfrac{1}{4}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4}\)
.......
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}=\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow B< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{3}{4}-\dfrac{1}{100}< \dfrac{3}{4}\)
Vậy B<3/4