\(B=\dfrac{1}{2}-\dfrac{1}{2^2}+\dfrac{1}{2^3}-\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}-\dfrac{1}{2^{100}}\)
\(\Rightarrow2B=1-\dfrac{1}{2}+\dfrac{1}{2^2}-\dfrac{1}{2^3}+\dfrac{1}{2^4}-...-\dfrac{1}{2^{99}}\)
\(\Rightarrow2B+B=3B=1-\dfrac{1}{2^{100}}\)
\(\Rightarrow B=\dfrac{1}{3}-\dfrac{1}{2^{100}.3}\)