Rút gọn : a) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
b)\(\dfrac{x+4y-4\sqrt{xy}}{\sqrt{x}-2\sqrt{y}}+\dfrac{y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x\ge0;y\ge0;x\ne4y\right)\)
c)\(\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{\sqrt{x}-2}\left(x\ge0;x\ne4\right)\)
d)\(\dfrac{9-x}{\sqrt{3x}+3}-\dfrac{9-6\sqrt{x}+x}{\sqrt{x}-3}\)
e)\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
g)\(\left(2-\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\dfrac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)với\) a, b \(\ge\)0 , a \(\ne\)9; b\(\ne\)25
Mọi người giúp tớ với , cảm ơn nhiều nhiều ạ !!
1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)
rút gọn:
A=\(x-4-\sqrt{16-8x^2+x^4}\left(x>4\right)\)
B=\(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\left(a,b>0,a\ne b\right)\)
F = \(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\right]\)
Chứng minh :
\(\dfrac{\left(x-y+3\sqrt{x}+3\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}=x-y\)
Chứng minh:
\(\dfrac{\left(x-y+3\sqrt{x}+3\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}+3}=x-y\)
a) \(\left(\dfrac{1}{2-\sqrt{3}}-\dfrac{3}{\sqrt{7}-2}\right):\dfrac{2}{\sqrt{7}+\sqrt{3}}\)
b) \(\left(\dfrac{x-\sqrt{x}}{1-\sqrt{x}}-1\right):\left(\sqrt{x}-x\right)+\dfrac{1}{x}\)
\(P=\left(\dfrac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
a) Rút gọn P (x > o, x khác 1)
b) Tìm giá trị của x để P > 0
\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
a) Rút gọn P
b) Cho \(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}=6\). Tìm GTLN của P