Giả sử biểu thức xác định
\(E=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}\)
Giả sử biểu thức xác định
\(E=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}}{\sqrt{y}}=\sqrt{\frac{x}{y}}\)
rút gọn biểu thức
\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-\sqrt{xy}+y}\)
rút gọn biểu thức \(x-\sqrt{xy}+y\)
\(\left(\sqrt{xy}+2\sqrt{\dfrac{y}{x}}-\sqrt{\dfrac{x}{y}+\sqrt{\dfrac{1}{xy}}}\right):\dfrac{1}{\sqrt{xy}}\)
\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
1. Rút gọn:
\(\sqrt{8-2\sqrt{7}}-\sqrt{9-2\sqrt{14}}\)
2. Tính:
2 + \(\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
3. CM:
a. \(\frac{x+y}{2}\) >= \(\sqrt{xy}\) với x, y >= 0
b. \(\frac{x}{y}+\frac{y}{x}\) >= 2 với x,y >= 0
c. a + b + 1 >= \(\sqrt{ab}\) + \(\sqrt{a}+\sqrt{b}\) với a,b >= 0.
1. Rút gọn:
\(\sqrt{8-2\sqrt{7}}-\sqrt{9-2\sqrt{14}}\)
\(\sqrt{5-2\sqrt{6}}-\sqrt{11-4\sqrt{6}}\)
2. Tính:
a. 2 + \(\sqrt{17-4\sqrt{9}+4\sqrt{5}}\)
b. \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7}+4\sqrt{3}}}\)
c. \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
3. CM:
a. \(\frac{x+y}{2}\) >= \(\sqrt{xy}\) với x, y >= 0
b. \(\frac{x}{y}+\frac{y}{x}\) >= 2 với x,y >= 0
c. a + b + 1 >= \(\sqrt{ab}\) + \(\sqrt{a}+\sqrt{b}\) với a,b >= 0.
B1. Cho bt A = \(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)-\left(\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\right)^2-1\)
a) rút gọnA
b) tính g.trị của A khi x=99, y=100
B2. cho bt P=\(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
a) tìm đk để P có nghĩa
b) rút gọn P
c) tính g.trị của P khi a=4; b=1
Rút gọn :
a) \(\dfrac{3\sqrt{2-6}}{\sqrt{2-1}}\)
b) \(\dfrac{3\sqrt{5}+5\sqrt{3}}{\sqrt{3}+\sqrt{5}}\)
c) \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}\)
Phân tích đa thức thành nhân tử (với các căn thức đều đã có nghĩa):
a) A = \(\sqrt{x^3}\) - \(\sqrt{y^3}\) + \(\sqrt{x^2y}\) - \(\sqrt{xy^2}\)
b) B = 5x2 - 7x\(\sqrt{y}\) + 2y