\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
B1. Cho bt A = \(\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right)-\left(\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\right)^2-1\)
a) rút gọnA
b) tính g.trị của A khi x=99, y=100
B2. cho bt P=\(\dfrac{\left(\sqrt{a}+\sqrt{b}\right)-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
a) tìm đk để P có nghĩa
b) rút gọn P
c) tính g.trị của P khi a=4; b=1
rút gọn biểu thức
\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-\sqrt{xy}+y}\)
1) Rút gọn
a) A=\(\dfrac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
b) B= \(\sqrt{\dfrac{\left(a-b\right)^3.b^3}{c}}\) .\(\sqrt{\dfrac{bc^3}{\left(a-b\right)}}\) ( với a-b>0, c<0)
c) C=(\(\sqrt{3+2\sqrt{2}}\) - \(\sqrt{3-2\sqrt{2}}\) ).(\(\sqrt{3-2\sqrt{2}}\) +\(\sqrt{3+2\sqrt{2}}\)
2) Giải phuong trình
a) \(\sqrt{x^2-4}\) -\(\sqrt{x-2}\) =0
b)\(\sqrt{3x^2+12x+16}\) +\(\sqrt{y^2-4y+13}\) =5
B2 : Tính :
a, \(\left(\sqrt{x}-3\right)\)\(.\left(\sqrt{x}+2\right)\)
b, \(\left(\sqrt{x}-\sqrt{y}\right).\)\(\left(\sqrt{x}+\sqrt{y}\right)\)
c, \(\left(\sqrt{\dfrac{25}{3}}-\sqrt{\dfrac{49}{3}}+\sqrt{3}\right)\)\(.\sqrt{3}\)
d,\(\left(1+\sqrt{3}-\sqrt{5}\right)\)\(.\left(1+\sqrt{3}+\sqrt{5}\right)\)
Rút gọn biểu thức:
a) \(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\);
b) \(\sqrt{\dfrac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\) (\(x\ge0\))
c)\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\) (\(x\ne1\), \(y\ne1\), \(y>0\)).
bài 1: tính
a) \(\sqrt{1,2\cdot27}\) b) \(\sqrt{55\cdot77\cdot35}\)
c) (\(\sqrt{3}-\sqrt{2}\) )\(^2\) d) (3\(\sqrt{2}-1\))*(3\(\sqrt{2}+1\))
e) (\(\sqrt{6}+7\)) (\(\sqrt{3}-\sqrt{2}\)) i) \(\sqrt{\dfrac{1}{8}}\cdot\sqrt{2}\cdot\sqrt{125}\cdot\sqrt{\dfrac{1}{5}}\)
h) \(\sqrt{\sqrt{2}-1}\cdot\sqrt{\sqrt{2}}+1\)
bài 2: tính
a) \(\sqrt{9}-\sqrt{17}\cdot\sqrt{9}+\sqrt{17}\)
b) 2\(\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
c) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) d) \(\dfrac{\sqrt{10}+\sqrt{15}}{\sqrt{8}+\sqrt{12}}\)
e) \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\) f) \(\dfrac{x+\sqrt{xy}}{9+\sqrt{xy}}\) (xy>0)
Cho bt B=\(\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\right)\left(\dfrac{\sqrt{x}-1}{\sqrt{x}}\right)\)
Cho E= \(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
a) ĐKXĐ E
b) Rút gọn