Bài 8: Rút gọn biểu thức chứa căn bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiền Trà

Rút gọn

A= \(\frac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)

B= \(\frac{1}{\sqrt{1}+\sqrt{2}}\)+\(\frac{1}{\sqrt{2}+\sqrt{3}}\)+\(\frac{1}{\sqrt{3}+\sqrt{4}}\)+\(\frac{1}{\sqrt{4}+\sqrt{5}}\)+\(\frac{1}{\sqrt{5}+\sqrt{6}}\)

Nguyễn Lê Phước Thịnh
21 tháng 8 2020 lúc 17:49

a) Ta có: \(A=\frac{8+2\sqrt{15}+\sqrt{21}+\sqrt{35}}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)

\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)^2+\sqrt{7}\cdot\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)

\(=\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}+\sqrt{7}\right)}{\sqrt{3}+\sqrt{5}+\sqrt{7}}\)

\(=\sqrt{3}+\sqrt{5}\)

b) Ta có: \(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}\)

\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+\frac{\sqrt{4}-\sqrt{3}}{\left(\sqrt{4}+\sqrt{3}\right)\left(\sqrt{4}-\sqrt{3}\right)}+\frac{\sqrt{5}-\sqrt{4}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+\frac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+2-\sqrt{3}+\sqrt{5}-2+\sqrt{6}-\sqrt{5}\)

\(=-1+\sqrt{6}\)


Các câu hỏi tương tự
yến phạm
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Minh Anh Tran
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
sara
Xem chi tiết
Tran Tuan
Xem chi tiết
Nguyễn Thảo Linh
Xem chi tiết
Lê Minh Tuấn
Xem chi tiết
nguyen thao
Xem chi tiết