MTC=x(x+1)(x-1)
\(\dfrac{1}{x^2+x}=\dfrac{1}{x\left(x+1\right)}=\dfrac{x-1}{x\left(x+1\right)\left(x-1\right)}\)
\(\dfrac{1}{x^2-x}=\dfrac{1}{x\left(x-1\right)}=\dfrac{x+1}{x\left(x-1\right)\left(x+1\right)}\)
MTC=x(x+1)(x-1)
\(\dfrac{1}{x^2+x}=\dfrac{1}{x\left(x+1\right)}=\dfrac{x-1}{x\left(x+1\right)\left(x-1\right)}\)
\(\dfrac{1}{x^2-x}=\dfrac{1}{x\left(x-1\right)}=\dfrac{x+1}{x\left(x-1\right)\left(x+1\right)}\)
Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
\(a)\dfrac{2}{{x - 3y}}\) và \(\dfrac{3}{{x + 3y}}\)
\(b)\dfrac{7}{{4{\rm{x}} + 24}}\) và \(\dfrac{{13}}{{{x^2} - 36}}\)
Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
a) \(\dfrac{5}{{2{{\rm{x}}^2}{y^3}}}\) và \(\dfrac{3}{{x{y^4}}}\)
b) \(\dfrac{3}{{2{{\rm{x}}^2} - 10{\rm{x}}}}\) và \(\dfrac{2}{{{x^2} - 25}}\)
Cho hai phân thức \(\dfrac{1}{{{x^2}y}}\) và \(\dfrac{1}{{x{y^2}}}\)
a) Hãy nhân cả tử và mẫu của phân thức thứ nhất với y và nhân cả tử và mẫu của phân thức thứ hai với x.
b) Nhân xét gì về mẫu của hai phân thức thu được.
Tìm MTC của hai phân thức \(\dfrac{5}{2x+6}\) và \(\dfrac{3}{x^2+9}\).
Cho phân thức: \(\dfrac{{2{{\rm{x}}^2} - x + 1}}{{x - 2}}\). Tìm giá trị của x sao cho mẫu: \(x - 2 \ne 0\).
Cho biểu thức: \(\dfrac{{2{\rm{x}} + 1}}{{x - 2}}\)
a) Biểu thức 2x +1 ở tử có phải là đa thức hay không?
b) Biểu thức x – 2 ở mẫu có phải là đa thức khác đa thức 0 hay không?
Mỗi cặp phân thức sau có bằng nhau không? Vì sao?
a) \(\dfrac{{x + y}}{{{x^2} - {y^2}}}\) và \(\dfrac{1}{{x - y}}\)
b) \(\dfrac{x}{{{x^2} - 1}}\) và \(\dfrac{1}{{x - 1}}\)
Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:
\(a)\dfrac{{3{\rm{x}}}}{2} = \dfrac{{15{\rm{x}}y}}{{10y}}\) \(b)\dfrac{{3{\rm{x}} - 3y}}{{2y - 2{\rm{x}}}} = \dfrac{{ - 3}}{2}\) \(c)\dfrac{{{x^2} - x + 1}}{x} = \dfrac{{{x^3} + 1}}{{x\left( {x + 1} \right)}}\)
Trong các biểu thức sau, biểu thức nào là phân thức?
\(a)\dfrac{{{x^2}y + x{y^2}}}{{x - y}}\) \(b)\dfrac{{{x^2} - 2}}{{\dfrac{1}{x}}}\)