Ta có: \(x - 2 \ne 0\) suy ra \(x \ne 2\)
Vậy \(x \ne 2\) thì mẫu \(x - 2 \ne 0\)
Ta có: \(x - 2 \ne 0\) suy ra \(x \ne 2\)
Vậy \(x \ne 2\) thì mẫu \(x - 2 \ne 0\)
Cho biểu thức: \(\dfrac{{2{\rm{x}} + 1}}{{x - 2}}\)
a) Biểu thức 2x +1 ở tử có phải là đa thức hay không?
b) Biểu thức x – 2 ở mẫu có phải là đa thức khác đa thức 0 hay không?
Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
a) \(\dfrac{5}{{2{{\rm{x}}^2}{y^3}}}\) và \(\dfrac{3}{{x{y^4}}}\)
b) \(\dfrac{3}{{2{{\rm{x}}^2} - 10{\rm{x}}}}\) và \(\dfrac{2}{{{x^2} - 25}}\)
Cho phân thức: \(\dfrac{{4{{\rm{x}}^2}y}}{{6{\rm{x}}{y^2}}}\)
a) Tìm nhân tử chung của tử và mẫu
b) Tìm phân thức nhận được sau khi chia cả tử và mẫu cho nhân tử chung đó.
Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:
\(a)\dfrac{2}{{x - 3y}}\) và \(\dfrac{3}{{x + 3y}}\)
\(b)\dfrac{7}{{4{\rm{x}} + 24}}\) và \(\dfrac{{13}}{{{x^2} - 36}}\)
Dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng:
\(a)\dfrac{{3{\rm{x}}}}{2} = \dfrac{{15{\rm{x}}y}}{{10y}}\) \(b)\dfrac{{3{\rm{x}} - 3y}}{{2y - 2{\rm{x}}}} = \dfrac{{ - 3}}{2}\) \(c)\dfrac{{{x^2} - x + 1}}{x} = \dfrac{{{x^3} + 1}}{{x\left( {x + 1} \right)}}\)
Dùng tính chất cơ bản của phân thức, hãy giải thích vì sao có thể viết: \(\dfrac{{3{\rm{x}} + y}}{y} = \dfrac{{3{\rm{x}}y + {y^2}}}{{{y^2}}}\).
Rút gọn mỗi phân thức sau:
\(a)\dfrac{{8{{\rm{x}}^2} + 4{\rm{x}}}}{{1 - 4{{\rm{x}}^2}}}\) \(b)\dfrac{{{x^3} - x{y^2}}}{{2{{\rm{x}}^2} + 2{\rm{x}}y}}\)
Cho hai phân thức \(\dfrac{1}{{{x^2}y}}\) và \(\dfrac{1}{{x{y^2}}}\)
a) Hãy nhân cả tử và mẫu của phân thức thứ nhất với y và nhân cả tử và mẫu của phân thức thứ hai với x.
b) Nhân xét gì về mẫu của hai phân thức thu được.
Quy đồng mẫu thức hai phân thức \(\dfrac{1}{x^2+x}\) và \(\dfrac{1}{x^2-x}\).