Cho hình thang ABCD (AB // CD, AB < CD). Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) DK = CI
b) EF // CD
c) AB2 = CD.EF
Cho tứ giác ABCD, AC và BD cắt nhau tại O. Đường thẳng song song với BC cắt AB ở E; đường thẳng song song với CD qua O cắt AD tại F.
a. Chứng minh: EF//BD.
*b. Từ O kẻ các đường thẳng song song với AB,AD cắt AD,CD tại G và H. Chứng minh: CG.DH=BG.CH.
giải hộ vs =(((
Cho tứ giác ABCD , đường thẳng qua A song song với BC cắt BD ở E , đường thẳng qua B song song với AD cắt AC ở G
a, Chứng minh : EG // CD
Cho hình thang ABCD (AB // CD, AB < CD).Hai đường chéo AC và BD cắt nhau tại O. Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) EF // CD
b) AB2 = CD.EF
Cho hình thang ABCD (AB // CD, AB < CD).Hai đường chéo AC và BD cắt nhau tại O. Qua A vẽ đường thẳng song song với BC cắt BD ở E và cắt CD ở K. Qua B kẻ đường thẳng song song với AD cắt AC ở F và cắt CD ở I. Chứng minh rằng:
a) EF // CD
b) AB2 = CD.EF
Cho hình vuông ABCD có cạnh a, một đường thẳng d bất kì đi qua đỉnh C cắt tia AB tại E và cắt tia AD tại F.
Chứng minh: BE/DF=AE^2/AF^2
Cho hình chữ nhật ABCD có các cạnh AB = 4cm , BC =3cm . Qua B vẽ đường thẳng vuông góc với BD cắt DC tại E
a, Chứng minh tam giác BDC đồng dạng với tam giác EDB , từ đó suy ra DB2 = DC . DE
b, tính DB , CE
c, vẽ CF vuông góc với BE tại F . Gọi O là giao điểm của AC và BD . Nối OE cắt CF tại I và cắt BC tại K . chứng minh I là trung điểm của đoạn CF
d, Chứng minh rằng : ba điểm D,K,F thẳng hàng
1,Cho tam giác ABC nhọn với H là trực tâm. Gọi M là trung điểm của BC. Các đường trung trực của AC và BC cắt nhau tại O. Chứng minh: AH = 2OM
2, Cho hình thang ABCD có đáy lớn là CD. Qua A kẻ đường thẳng AK song song BC ( K thuộc CD ). Qua điểm B kẻ đường thẳng BI song song AD ( I thuộc CD ). BI cắt AC tại F; AK cắt BD tại E. Chứng minh rằng:
a, EF song song AB
b, AB2 = CD.EF
1.Cho tam giác \(ABC\left(AB< AC\right)\) , tia phân giác góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\) , cắt \(AC\) ở \(E\) . Chứng minh \(BD=CE\)
2.Cho tam giác \(ABC\) có \(AB< AC\) , \(D\) là một điểm nằm giữa \(A\) và \(C\) . Chứng minh rằng \(\Delta ABD=\Delta ACB\) và \(AB^2=AC.AD\)