1.Cho tam giác \(ABC\left(AB< AC\right)\) , tia phân giác góc \(A\) cắt \(BC\) ở \(K\). Qua trung điểm \(M\) của \(BC\) kẻ một tia song song với \(KA\) cắt đường thẳng \(AB\) ở \(D\) , cắt \(AC\) ở \(E\) . Chứng minh \(BD=CE\)
2.Cho tam giác \(ABC\) có \(AB< AC\) , \(D\) là một điểm nằm giữa \(A\) và \(C\) . Chứng minh rằng \(\Delta ABD=\Delta ACB\) và \(AB^2=AC.AD\)
Bài 1:
Xét tam giác $BDM$ có $AK\parallel DM$, áp dụng đl Talet:
$\frac{BA}{BD}=\frac{BK}{BM}=\frac{2BK}{BC}(*)$
Xét tam giác $CAK$ có $ME\parallel AK$, áp dụng đl Talet:
$\frac{CE}{CA}=\frac{CM}{CK}=\frac{BC}{2CK}(**)$
Lấy $(*)$ nhân $(**)$ thì:
$\frac{CE}{BD}.\frac{AB}{AC}=\frac{BK}{CK}$
Mà: $\frac{BK}{CK}=\frac{AB}{AC}$ (theo tính chất tia phân giác)
$\Rightarrow \frac{CE}{BD}=1$
$\Rightarrow CE=BD$ (đpcm)