ĐKXĐ: \(x\ge-m\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\sqrt{x+m}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-m\end{matrix}\right.\)
Để pt có 3 nghiệm (phân biệt):
\(\Leftrightarrow\left\{{}\begin{matrix}-m\ne-1\\-m\ne2\\-1\ge-m\\2\ge-m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-2\\m\ge1\\m\ge-2\end{matrix}\right.\) \(\Rightarrow m>1\)