a) \(4a^2b^2-\left(a^2+b^2-1\right)^2\)
\(=\left(2ab\right)^2-\left(a^2+b^2-1\right)^2\)
\(=\left(2ab-a^2-b^2+1\right)\left(2ab+a^2+b^2-1\right)\)
\(=\left(1-a^2+2ab-b^2\right)\left(a^2+2ab+b^2-1\right)\)
\(=\left[1-\left(a-b\right)^2\right]\left[\left(a+b\right)^2-1\right]\)
\(=\left(1-a+b\right)\left(1+a-b\right)\left(a+b-1\right)\left(a+b+1\right)\)
b) \(\left(xy+4\right)^2-\left(2x+2y\right)^2\)
\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
c)x4-2x3-6x-9
=(x4-9)-(2x3+6x)
=(x2+3)(x2-3)-2x(x2-3)
=(x2-3)(x2+3-2x)
(ab-1)2-(a-2)2
=(ab-1-a+2)(ab-1+a-2)
=(ab-a+1)(ab+a-3)