Cộng trừ phân số
1)\(x+2+\frac{3}{x-2}\)
2)\(\frac{x^2}{\left(x-y\right)\left(x-z\right)}+\frac{y^2}{\left(y-x\right)\left(y-z\right)}+\frac{z^2}{\left(z-x\right)\left(z-y\right)}\)
Rút gọn \(\frac{1}{\left(x+y\right)^3}.\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^5}.\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}.\left(\frac{1}{x}+\frac{1}{y}\right)\)
Rút gọn biểu thức sau:
\(A=\frac{x^2-yz}{\left(x+y\right)\left(y+z\right)}+\frac{y^2-xz}{\left(x+y\right)\left(y+z\right)}+\frac{z^2-xy}{\left(x+z\right)\left(y+z\right)}\)
Cộng trừ phân số
\(\frac{x^2}{\left(x-y\right)^2\left(x+y\right)}-\frac{2xy^2}{x^4-2x^2y^2+y^4}+\frac{y^2}{\left(x^2-y^2\right)\left(x+y\right)}\)
Cho các số thực x,y,z khác 1 và xyz=1
CMR: \(\frac{x^2}{\left(x-1\right)^2}+\frac{y^2}{\left(y-1\right)^2}+\frac{z^2}{\left(z-1\right)^2}\ge1\)
Cho x; y; z không âm và (x + z)(y + z) = 1.
Chứng minh: \(\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(x+z\right)^2}+\frac{1}{\left(y+z\right)^2}\)
Bài 1: Cho a,b,c đôi một khác nhau. Chứng minh rằng:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\) và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Mọi người làm nhanh giúp em với ạ!
Thực hiện phép tính:
a) \(A=\frac{x^2-yz}{1+\frac{y+z}{x}}+\frac{y^2-zx}{1+\frac{z+x}{y}}+\frac{z^2-xy}{1+\frac{x+y}{z}}\)
b) \(B=\frac{2}{3}.\left[\frac{1}{1+\frac{\left(2x+1\right)^2}{3}}+\frac{1}{1+\frac{\left(2x-1\right)^2}{3}}\right]\)
cho 3 số hữu tỉ x y z
chứng minh rằng :
\(\frac{1}{\left(x-y\right)^2}\) + \(\frac{1}{\left(y-z\right)}^2\) + \(\frac{1}{\left(z-x\right)^2}\) là bình phương của1 số hữu tỉ