Cho đường thẳng d có phương trình y = ax + b biết rằng đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 1 và song song với đường thẳng y = -2x + 2003
1. Tìm a và b
2. Tìm tọa độ các điểm chung nếu có của d và parabol p: y=-1/2x^2
Cho parabol (P): y= -x2 và đường thẳng (d): y = mx -1
a) Chứng minh rằng với mọi m thì (d) luôn cắt (P) tại 2 điểm phân biệt.
b) Gọi x1; x2 lần lượt là hoành độ các giao điểm của đường thẳng (d) và parabol (P). Tìm giá trị của m để \(x_1^2x_2+x_2^2x_1-x_1x_2=3\)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y=(m+2)x-m+3 và parabol (P): y=x2
a) Tìm tọa độ giao điểm của (P) và (d) khi m=3
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x21 + x22+ x1x2≤5
Cho parabol (P): y=2x2 và đường thẳng (d): y=4x-m
a) Tìm tọa độ giao điểm của đường thẳng (d) và (P) khi tham số m=6
b) Tìm tham số m để (d) cắt (P) tại hai điểm phân biệt A,B có hoành độ lần lượt là x1;x2 sao cho 2x1+x2= -5
Cho parabol (P): y =\(\dfrac{1}{2}x^2\)
a) Hai điểm A,B thuộc (P) có hoành độ lần lượt là 2;-1. Tìm tọa độ điểm A,B.
b) Viết phương trình đường thẳng đi qua hai điểm A và B
Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x^2 và đường thẳng d: y=2x+|m|+ 1 ( m là tham số ). a) Chứng minh đường thẳng ở luôn cắt (P) tại 2 điểm phân biệt. b) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1 x2
Cho Parabol (P) : y = x2 và đường thẳng (d) : y = mx - m +1
a. Tìm toạ độ giao điểm của (P) và (d) khi m = 4
b. Gọi x1 và x2 là hoành độ giao điểm của (P) và (d) . Tìm m sao cho x1 = 9 x2
Cho parabol (P): y= x2 và đường thẳng (d): y= mx +3. Tìm m để đường thẳng (d) cắt parabol (P) tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn điều kiện x13x2 + x1x23= -93
(mink đag cần gấp)
trong mặt phẳng toạ độ giao điểm của đường thẳng (d) y = (2m+5)x+2m+6 và parabol (P) y = x^2. tìm giá trị của m để (d) cắt (P) tại 2 điểm phân biệt có hoành độ thoả mãn |x1|+|x2|=7